Learning Sparse Latent Representations with the Deep Copula Information Bottleneck
نویسندگان
چکیده
Deep latent variable models are powerful tools for representation learning. In this paper, we adopt the deep information bottleneck model, identify its shortcomings and propose a model that circumvents them. To this end, we apply a copula transformation which, by restoring the invariance properties of the information bottleneck method, leads to disentanglement of the features in the latent space. Building on that, we show how this transformation translates to sparsity of the latent space in the new model. We evaluate our method on artificial and real data.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملProvable Algorithms for Machine Learning Problems
Modern machine learning algorithms can extract useful information from text, images and videos. All these applications involve solving NP-hard problems in average case using heuristics. What properties of the input allow it to be solved efficiently? Theoretically analyzing the heuristics is often very challenging. Few results were known. This thesis takes a different approach: we identify natur...
متن کاملLearning and Transferring Deep ConvNet Representations with Group-Sparse Factorization
Deep convolutional neural networks (Deep ConvNets or CNNs) have exhibited their promise as a universal image representation for recognition. In this work we explore how the transferability of such deep ConvNet representations trained on large-scale annotated object-centric datasets (ImageNet) can be further enhanced for other visual recognition tasks with limited amount of unlabeled training da...
متن کاملSparse meta-Gaussian information bottleneck
We present a new sparse compression technique based on the information bottleneck (IB) principle, which takes into account side information. This is achieved by introducing a sparse variant of IB which preserves the information in only a few selected dimensions of the original data through compression. By assuming a Gaussian copula we can capture arbitrary non-Gaussian margins, continuous or di...
متن کاملDeep Belief Nets for Topic Modeling Workshop on Knowledge-Powered Deep Learning for Text Mining (KPDLTM-2014)
Applying traditional collaborative filtering to digital publishing is challenging because user data is very sparse due to the high volume of documents relative to the number of users. Content based approaches, on the other hand, is attractive because textual content is often very informative. In this paper we describe large-scale content based collaborative filtering for digital publishing. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018